DAVID PARRISH

NOAA/ESRL

Chemical Sciences Division

Organized by NOAA/CARB/CEC (CARB: \$2M in 2008/09)

5th Annual California Climate Change Conference September 8-10, 2008, Sacramento, CA

2010 CalNex White Paper

Research at the Nexus of Air Quality and Climate Change

9 January 2008

Summer

CalWater 2009/10: Energy, Water and Regional Climate

Winter/Summer

Complementary foci NOAA involved in both

5th Annual California Climate Change Conference September 8-10, 2008, Sacramento, CA

2010 CalNex White Paper

Research at the Nexus of Air Quality and Climate Change

9 January 2008

today:

- Introduction to CalNex 2010
- Introduction to NOAA's interests and platforms
- Science issues: focus on Climate Change

Why CalNex?

5th Annual California Climate Change Conference September 8-10, 2008, Sacramento, CA

2010 CalNex White Paper

Research at the Nexus of Air Quality and Climate Change

9 January 2008

- 1) Management and Mitigation Strategies for these 2 issues are strongly linked.
- 2) Sources and Processes for these 2 issues are the same (nearly).

Why California?

2010 CalNex White Paper

Research at the Nexus of Air Quality and Climate Change

9 January 2008

Study Rationale

- California has traditionally led the nation in addressing Air Quality issues.
- California has recently taken the lead in beginning to address Climate Change.
- NOAA is developing a new research initiative addressing Air Quality and Climate Change linkages.

CalNex addresses NOAA's and California's Science Interests

What are NOAA's interests?

2010 CalNex White Paper

Research at the Nexus of Air Quality and Climate Change

9 January 2008

NOAA/ESRL Regional Intensives

Chemically and Meteorologically Diverse

NOAA's Assets

Collaborate with Others on fielding Ground-based Remote and In Situ Instrumentation

NOAA WP-3D

NOAA WP-3D Research Aircraft

Specifications

- Airspeed: ~ 200 nm/hr
- Endurance: ~ 6-8 hours
- Range: ~ 1200 nm
- Ceiling: ~ 21,000 feet
- Day and night flights
- 5 Scientists

In situ measurements - 1 second averages

- Anthropogenic and natural emissions
- Ozone and other photochemical products
- Aerosols physical, chemical and optical properties
- Greenhouse gases
- Cloud properties

NOAA DeHavilland Twin Otter

NOAA Research Vessel Ronald H.

2010 CalNex

California Air Quality & Climate Change Field Study

Science Issues

- Emissions top down tests
- Chemical Transformation and Climate Processes
- Transport and Meteorology
- Aerosol Properties and Radiative effects

4 Example Studies

2010 CalNex White Paper

Research at the Nexus of Air Quality and Climate Change

9 January 2008

Emissions Quantification

Improved inventories are essential for predictive capability

Non-CO₂ Greenhouse Gas Emissions

• What can measurements tell us?

California greenhouse gas emissions

Global warming potential of greenhouse gases.

Gas	GWP	MW
CO_2	1	44
CH ₄	23	16
HFC-134a	1300	102

Emissions Quantification

Improved inventories are essential for predictive capability

2010: Provide more extensive data set

- Spatial variability
- Agricultural contribution

Global warming potential of greenhouse gases.

Gas	GWP	MW
CO_2	1	44
CH_4	23	16
HFC-134a	1300	102

Analysis by M. Trainer

WP-3D flight

Los Angeles

Emissions Quantification

Improved inventories are essential for predictive capability

2010: Provide more extensive data set

• Special variability

Spatial variability

Global warming potential of greenhouse gases.

Gas	GWP	MW
CO ₂	1	44
CH_4	23	16
HFC-134a	1300	102

WP-3D flight

Los Angeles

Chemical Transformation

Aim to understand on a process level for predictive capability

Nighttime Nitrate Formation

Chemical Transformation

Aim to understand on a process level for predictive capability

Nighttime Nitrate Formation

In Eastern U.S. acidic sulfate aerosol enhances N_2O_5 nitrate formation in power plant regions.

In urban areas less acidic aerosol slows N_2O_5 nitrate formation - NO_3 , N_2O_5 reservoir is available as NOx for the next day's photochemistry.

2010: How does California compare:
Small sulfate aerosol contribution,
large organic aerosol fraction Do these affect nitrate formation?
Large nitrate aerosol fraction Does this inhibit N₂O₅ conversion?

Brown et al., 2006

Transport and Meteorology

Understanding is critical for characterizing O₃ and PM levels

Transport of Asian emissions to California

Emissions of ozone and aerosol precursors from East Asia have increased rapidly over the past 2 decades.

Ozone concentrations in air arriving at the US west coast form the Pacific have increased substantially over the past 2 decades.

Due to increasing Asian emissions? Ozone concentrations have also increased in Ireland.

2010:

- Does trend continue?
- Can we discern signature of cause of this increase?

Aerosol Properties and Radiative Effects

Aim to reduce uncertainty of aerosol radiative forcing

Direct Radiative Effects

2010:

- 1. Compare directly measured aerosol radiative properties with those calculated from the measured size distributions and chemical composition.
- 2. Measure and calculate clear sky radiative forcing under a variety of conditions:
- downwind of different sources
- various altitudes and distances inland
- different times of day
- different meteorological conditions

Why CalNex?

today:

- Introduction to CalNex 2010
- Introduction to NOAA's interests and platforms
- Science issues: focus on Climate Change

5th Annual California Climate Change Conference September 8-10, 2008, Sacramento, CA

2010 CalNex White Paper

Research at the Nexus of Air Quality and Climate Change

9 January 2008